Optical Characteristics of 1.24- m InAs Quantum-Dot Laser Diodes
نویسندگان
چکیده
The optical characteristics of the first laser diodes fabricated from a single-InAs quantum-dot layer placed inside a strained InGaAs QW are described. The saturated modal gain for this novel laser active region is found to be 9–10 cm 1 in the ground state. Room temperature threshold current densities as low as 83 A/cm2 for uncoated 1.24m devices are measured, and operating wavelengths over a 190-nm span are demonstrated.
منابع مشابه
Monolithic Passively Mode-Locked Lasers using Quantum Dot or Quantum Well Materials Grown on GaAs Substrates
In this work, the optical characteristics of monolithic passively mode-locked lasers (MLLs) fabricated from 1.24-μm InAs dots-in-a-Well (DWELL), 1.25-μm InGaAs single quantum well (SQW), and 1.55-μm GaInNAsSb SQW structures grown using elemental source molecular beam epitaxy (MBE) are reported. 5 GHz optical pulses with subpicosecond RMS jitter, high pulse peak power (1W) and narrow pulse width...
متن کاملCoherence Length Characteristics from Broadband Semiconductor Emitters: Superluminescent Diodes versus Broadband Laser Diodes
This paper reports on the measurement and analysis of the coherence function for broadband emitters such as superluminescent diodes (SLDs) and novel broadband laser diodes (BLDs) from self-assembled InGaAs/GaAs quantumdot (QD) and InAs/InP quantum-dash (Qdash) structures that emit at center wavelengths of 1150nm and 1650nm, respectively. Using the fiber-based spectral interferometry system, coh...
متن کامل1.55 µm InAs/GaAs Quantum Dots and High Repetition Rate Quantum Dot SESAM Mode-locked Laser
High pulse repetition rate (≥ 10 GHz) diode-pumped solid-state lasers, modelocked using semiconductor saturable absorber mirrors (SESAMs) are emerging as an enabling technology for high data rate coherent communication systems owing to their low noise and pulse-to-pulse optical phase-coherence. Quantum dot (QD) based SESAMs offer potential advantages to such laser systems in terms of reduced sa...
متن کاملOptical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser
The impact of optical feedback on the direct performance of a monolithic InAs/GaAs quantum dot passively mode-locked laser intended for applications such as multi-gigahertz interchip/intra-chip clock distribution is experimentally investigated. Evaluation of the feedback resistance is an important feature, as the laser is to be monolithically integrated on chip with other devices, in which case...
متن کاملInAs/InP(100) quantum dot laser with high wavelength stability
Introduction: The lasing wavelength of a semiconductor laser inevitably changes with varying the operation temperature, which is, however, not desirable for applications requiring specific and stable light wavelength. Thus, laser diodes with wavelength insensitive to temperature are fascinating and can drastically ease the critical requirements on precise temperature control. The quantum dot (Q...
متن کامل